138 research outputs found

    Oxo-centered carboxylate-bridged trinuclear complexes deposited on Au(111) by a mass-selective electrospray.

    Get PDF
    We developed an apparatus for nondestructive in vacuum deposition of mass-selected fragile Cr based metal trinuclear complexes, by modifying a commercial Mass Spectrometer containing an electrospray ionization source. Starting from a solution, this system creates a beam of ionized molecules which is then transferred into an evacuated region where the molecules can be mass selected before deposition. To verify the system efficiency, we deposited sub monolayers of oxo-centered carboxylate-bridged trinuclear complexes (Cr3 and Cr2Ni) on Au(111) surface. By XPS and STM we determined the deposited molecule stoichiometry and the surface coverage. The results show that this apparatus is works well for the in vacuum deposition of molecular nanomagnets and, thanks to its reduced dimensions, it is portable

    Fabrication of three terminal devices by ElectroSpray deposition of graphene nanoribbons

    Get PDF
    Electrospray deposition (ESD) in ambient conditions has been used to deposit graphene nanoribbons (GNRs) dispersed in liquid phase on different types of substrates, including ones suitable for electrical transport. The deposition process was controlled and optimized by using Raman spectroscopy, Scanning Probe Microscopies and Scanning Electron Microscopy. When deposited on graphitic electrodes, GNRs were used as semi-conducting channel in three terminal devices showing gate tunability of the electrical current. These results suggest that ESD technique can be used as an effective tool to deposit chemically synthesized GNRs onto substrates of interest for technological applications

    Magnetic interplay between two different lanthanides in a tris-phthalocyaninato complex: a viable synthetic route and detailed investigation in the bulk and on the surface

    Get PDF
    Future applications of molecular units in quantum information technologies require a fine control at the single molecule level. This includes the choice of each functional element, the intramolecular interaction and the robustness of molecules when dispersed on a substrate. Keeping these goals in mind, we designed and synthesized a heterometallic phthalocyaninato-complex including two different lanthanides in each moiety, namely [PcDyPcTbPc*] (Pc being phthalocyanines; and Pc* being 2,3,9,10,16,17,23,24- octahexyl-substituted phthalocyanines). Full magnetic characterization was performed down to the mK temperature range on bulk microcrystals by means of AC susceptibility, DC magnetization (including microSQUID) and specific heat measurements. A weak, yet sizeable, interaction between the two lanthanides is clearly detected by different techniques, altering the magnetic behavior of the single lanthanide as observed in the parent [LnPc2] complexes. Isolated [PcDyPcTbPc*] molecules dispersed on HOPG and the Au surface by liquid phase deposition are proven to maintain their main chemical and magnetic features by combined XPS, XAS and XMCD analysis and to lie with one Pc ligand flat to the surface. Opening of a small but sizable hysteresis loop at 1.8 K is directly observed on both Tb and Dy sites proving the retention of magnetization at the single molecule level

    Antiferromagnetic coupling of TbPc2 molecules to ultrathin Ni and Co films

    Get PDF
    The magnetic and electronic properties of single-molecule magnets are studied by X-ray absorption spectroscopy and X-ray magnetic circular dichroism. We study the magnetic coupling of ultrathin Co and Ni films that are epitaxially grown onto a Cu(100) substrate, to an in situ deposited submonolayer of TbPc2 molecules. Because of the element specificity of the X-ray absorption spectroscopy we are able to individually determine the field dependence of the magnetization of the Tb ions and the Ni or Co film. On both substrates the TbPc2 moleculescouple antiferromagnetically to the ferromagnetic films, which is possibly due to a superexchange interaction via the phthalocyanine ligand that contacts the magnetic surface

    Spin-communication channels between Ln(III) bis-phthalocyanines molecular nanomagnets and a magnetic substrate

    Get PDF
    Learning the art of exploiting the interplay between different units at the atomic scale is a fundamental step in the realization of functional nano-architectures and interfaces. In this context, understanding and controlling the magnetic coupling between molecular centers and their environment is still a challenging task. Here we present a combined experimental-theoretical work on the prototypical case of the bis(phthalocyaninato)-lanthanide(III) (LnPc 2) molecular nanomagnets magnetically coupled to a Ni substrate. By means of X-ray magnetic circular dichroism we show how the coupling strength can be tuned by changing the Ln ion. The microscopic parameters of the system are determined by ab-initio calculations and then used in a spin Hamiltonian approach to interpret the experimental data. By this combined approach we identify the features of the spin communication channel: the spin path is first realized by the mediation of the external (5d) electrons of the Ln ion, keeping the characteristic features of the inner 4 f orbitals unaffected, then through the organic ligand, acting as a bridge to the external world

    Edge Dislocation Behaviour in Au-n Silicon Diodes

    No full text
    By measuring the reverse bias chararcteristics of Au-nSi diodes made from deformed silicon, with variable content of edge dislocations, their electronic properties are deduce
    • …
    corecore